Problem 29
How many distinct terms are in the sequence generated by a^b for 2 (le) a (le) 100 and 2 (le) b (le) 100?
LinkedList<double> distinct_values = new LinkedList<double>(); for (int i = 2; i <= 100; i++) { for ( int j = 2 ; j <= 100; j ++) { double temp = Math.Pow(i, j); if (!distinct_values.Contains(temp)) { distinct_values.AddLast(temp); Console.WriteLine(temp); } } } Console.WriteLine("Total : " + distinct_values.Count ); |
Problem 30
Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
double super_sum = 0; for (int j = 2; j < 1000000; j++) { int num = j; double sum_of_dig = 0; string num_string = num.ToString(); for (int i = 0; i < num_string.Length; i++) { double pow = int.Parse(num_string[i].ToString()); sum_of_dig += Math.Pow(pow, 5); } if (sum_of_dig == num) super_sum += sum_of_dig; } Console.WriteLine("Final Sum :"+ super_sum); |
Problem 34
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
Note: as 1! = 1 and 2! = 2 are not sums they are not included.
static void Main(string[] args) { long bigsum = 0; for (int q = 3; q < 1000000; q++) { long num = q; string num_String = num.ToString(); long sum = 0; for (int j = 0; j < num_String.Length; j++) { int temp = int.Parse(num_String[j].ToString()); sum += Factorial(temp); } if (num == sum) bigsum += num; } Console.WriteLine("Answer : " +bigsum); } public static long Factorial(long x) { long fact = 1; long i = 1; while (i <= x) { fact = fact * i; i++; } return fact; } |