http://projecteuler.net/problem=39
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.
{20,48,52}, {24,45,51}, {30,40,50}
For which value of p <= 1000, is the number of solutions maximised?
int Max_P = 0; int P_position = 0; for (int p = 1; p < 1000; p++) { int count_p = 0; for (int a = 1; a < 500; a++) { for (int b = 1; b < 500; b++) { for (int c = 1; c < 500; c++) { if ( (a + b + c == p) && (Math.Pow(a, 2.00) + Math.Pow(b, 2.00) == Math.Pow(c, 2.00)) ) count_p++; } } } if (Max_P < count_p) { Max_P = count_p; P_position = p; } } Console.WriteLine("p = "+P_position); |